Abstract
Purpose: Marketing is a field that has been impacted by artificial intelligence (AI). The research question of this study is: How can the use of artificial intelligence influence purchase intention and contribute to an enhancement of the consumer's state of vulnerability? Therefore, the general objective of this article is to understand how the use of artificial intelligence can influence purchase intentions and contribute to enhancing the state of consumer vulnerability.
Originality: The originality of this study lies in the exploration of the negative implications of artificial intelligence (AI) in marketing, especially in relation to the constructs “purchase intention” and “consumer vulnerability”, from a perspective that has not yet been addressed in the literature. Unlike most studies that take an optimistic approach and focus on the benefits of AI for personalization and marketing efficiency, this research focuses on the ethical concerns and adverse effects that AI can have on consumers. By emphasizing the vulnerabilities and ethical implications of AI in marketing, the article makes an innovative contribution to the field by complementing the predominant narrative of benefits with a more critical analysis, promoting a broader discussion about the implications of AI in consumer relations.
Methodology: This study follows a qualitative approach, using semi-open interviews with 20 smartphone consumers in Salvador-Bahia, to explore their experiences with AI uses in the marketing field and how this can contribute to purchase intention and consumer vulnerability. The data was analyzed through content analysis, allowing the identification of relevant patterns and contributions.
Results: The results of this study indicated that the majority of respondents feel uncomfortable with the excessive volume of advertisements and the perception of constant surveillance, indicating that the intensive use of AI in marketing can, in many cases, be detrimental to purchase intent. In addition, the results showed that while AI facilitates personalization and efficiency in marketing strategies, it also increases consumer vulnerability. The majority of respondents reported a feeling of lack of control and insecurity over the use of their personal information, reinforcing the state of vulnerability. Therefore, consumer vulnerability in the context of AI is enhanced by several interrelated factors. The collection of data, the lack of transparency about the use of this information and the psychological impact of constant interactions with AI algorithms exacerbate the feeling of lack of control. In addition, financial and performance expectations are often not met, which increases the risk of impulsive decisions and regrets, as seen in the testimonies of the interviewees in this study.
Conclusion: This article concludes that while AI offers commercial benefits, it also presents significant challenges for consumer well-being. The results of the study highlight that even though AI offers strategic advantages to companies, it also increases the state of vulnerability of consumers, especially with regard to privacy, emotional manipulation and trust in digital interactions.
References
Barari, M., Casper Ferm, L.-E., Quach, S., Thaichon, P. and Ngo, L. (2024), "The dark side of artificial intelligence in marketing: meta-analytics review", Marketing Intelligence & Planning, Vol. 42 No. 7, pp. 1234-1256. https://doi.org/10.1108/MIP-09-2023-0494
Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. foresight, 25(2), 249-263. https://doi.org/10.1108/FS-10-2021-0218
Baker, S. M., Gentry, J. W., & Rittenburg, T. L. (2005). Building understanding of the domain of consumer vulnerability. Journal of macromarketing, 25(2), 128-139. https://doi.org/10.1177/0276146705280622
Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2020). Robots or frontline employees? Exploring customers’ attributions of responsibility and stability after service failure or success. Journal of Service Management, 31(2), 267–289. https://doi.org/10.1108/JOSM-05-2019-0156
Belanche, D., Belk, R. W., Casaló, L. V., & Flavián, C. (2024). The dark side of artificial intelligence in services. The Service Industries Journal, 44(3-4), 149-172. https://doi.org/10.1080/02642069.2024.2305451
Belk, R. (2021). Ethical issues in service robotics and artificial intelligence. The Service Industries Journal, 41(13-14), 860-876. https://doi.org/10.1080/02642069.2020.1727892
Belk, R. W., Belanche, D., & Flavián, C. (2023). Key concepts in artificial intelligence and technologies 4.0 in services. Service Business, 17(1), 1–9. https://doi.org/10.1007/s11628-023-00528-w
Bitner, M. J., Booms, B. H., & Tetreault, M. S. (1990). The service encounter: Diagnosing favorable and unfavorable incidents. Journal of Marketing, 54(1), 71–84. https://doi.org/10.1177/002224299005400105
Boni, V., & Quaresma, S. J. (2005). Aprendendo a entrevistar: como fazer entrevistas em Ciências Sociais. Revista eletrônica dos pós-graduandos em sociologia política da UFSC, 2(1), 3.
Bory, P., Natale, S., & Katzenbach, C. (2024). Strong and weak AI narratives: an analytical framework. AI & SOCIETY, 1-11.https://doi.org/10.1007/s00146-024-02087-8
Brasil. (2018, 14 de agosto). Lei nº 13.709, de 14 de agosto de 2018. Dispõe sobre a proteção de dados pessoais e altera a Lei nº 12.965, de 23 de abril de 2014. Diário Oficial da União. https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm
Brill, T. M., Muñoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15-16), 1401-1436. https://doi.org/10.1080/0267257X.2019.1687571
Carah, N. (2017). Algorithmic brands: A decade of brand experiments with mobile and social media. New Media & Society, 19(3), 384-400. https://doi.org/10.1177/1461444815605463
Cardoso, O. V. (2024). Inteligência Artificial, Direito e Processo. Editora Dialética.
Chouk, I., & Mani, Z. (2016). Can smart and connected things generate consumer resistance? A netnographic study. Decisions Marketing, 84(4), 19-41. https://doi.org/10.7193/DM.084.19.41
Clarke III, I. (2001). Emerging value propositions for m-commerce. Journal of Business Strategies, 18(2), 133-148. https://doi.org/10.54155/jbs.18.2.133-148
Costa, C. C. R., Pontifícia, C. R. V., & Veiga, C. P. (2022). Experiência do consumidor e inteligência artificial: uma revisão da literatura. Desafio Online, 10(3). https://doi.org/10.55028/don v10i3.13269
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. https://doi.org/10.1007/s11747-019-00696-0
Du, S., & Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. https://doi.org/10.1016/j.jbusres.2020.08.024
Flick, U. (2008). Introdução à pesquisa qualitativa-3. Artmed editora.
Fox, S. (2018). Domesticating artificial intelligence: Expanding human self-expression through applications of artificial intelligence in prosumption. Journal of Consumer Culture, 18(1), 169-183. https://doi.org/10.1177/1469540516659126
Frazão, A. (2019). Quais devem ser os parâmetros éticos e jurídicos para a utilização da inteligência artificial.
Gil, A. (2002). Didática do ensino superior. São Paulo: Atlas, 2006. Como elaborar projetos de pesquisa. 4ª edição, São Paulo. Atlas.
Gomes, D. T., & Vera, L. A. R. (2022). Um estudo sobre a percepção dos consumidores do varejo de moda das pequenas empresas sobre as estratégias de mídias pagas e mídias ganhas nas redes sociais. International Journal of Business and Marketing, 7(1), 55-65.
Governo Brasileiro (GOV.COM). (2022) Celular segue como aparelho mais utilizado para acesso à internet no Brasil. PNAD CONTÍNUA TIC, [s. l.], 16 set. 2022. Disponível em: https://www.gov.br/mcom/pt-br/noticias/2022/setembro/celular-segue-como-aparelho-mais-utilizado-para-acesso-a-internet-no-brasil. Acesso em: 11 jun. 2023.
Grewal, D.; Roggeveen, A. L; & Nordfält, J. (2017) The future of retailing. Journal of retailing, 93(1), 1-6. https://doi.org/10.1016/j.jretai.2016.12.008
Hakimpoor, H., Arshad, K. A. B., Tat, H. H., Khani, N., & Rahmandoust, M. (2011). Artificial neural networks’ applications in management. World Applied Sciences Journal, 14(7), 1008-1019.
Jenkins, H. (2009). Fans, blogueros y videojuegos: la cultura de la colaboración (Vol. 180). Grupo Planeta (GBS).
Kaufman, D. (2018). Deep learning: a Inteligência Artificial que domina a vida do século XXI. Teccogs: Revista Digital de Tecnologias Cognitivas, (17).
Kaufman, D., & Roza, E. (2013). Empresas e consumidores em rede: um estudo das práticas colaborativas no Brasil. Annablume.
Kim, A. J.; Johnson, K. K. P. (2016) Power of consumers using social media: Examining the influences of brand- related user-generated content on Facebook. Computers in Human Behavior, 58, 98-108.
Leal, J. S., Baldanza, R. F., Neto, J. B. S., & de Lima Dantas, B. L. (2021). “Olá, Posso Te Ajudar?”: Inteligência Artificial E A Vulnerabilidade Do Consumidor. Revista de Administração FACES Journal.
Lei no 8.078, de 11 de setembro de 1990. (1990). Dispõe sobre a proteção do consumidor e dá outras providências. Recuperado de http://www.planalto.gov.br/ccivil_03/leis/L8078.htm
Lockey, S. et al (2021). Uma revisão da confiança na inteligência artificial: desafios, vulnerabilidades e direções futuras.
Lucena Filho, R. B., Aguiar, E. C., & Machado, P. de A. (2024). Antecedentes da Vulnerabilidade do Consumidor: Uma Análise Bibliométrica. Revista Interdisciplinar De Marketing, 14(1), 72-91. https://doi.org/10.4025/rimar.v14i1.67540
Makridis, C. A., & Mishra, S. (2022). Artificial intelligence as a service, economic growth, and well-being. Journal of Service Research, 25(4), 505–520. https://doi.org/10.1177/1094670522112021
Malhotra, G., & Ramalingam, M. (2023). Perceived anthropomorphism and purchase intention using artificial intelligence technology: examining the moderated effect of trust. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-09-2022-0316
Marinchak, C. M., Forrest, E., & Hoanca, B. (2018). Artificial intelligence: Redefining marketing management and the customer experience. International Journal of E-Entrepreneurship and Innovation (IJEEI), 8(2), 14-24.https://doi.org/10.4018/ijeei.2018070102
McCarthy, J. (2007) O que é inteligência artificial. Merriam, S. B., & Tisdell, E. (2009). Pesquisa qualitativa: um guia para o design e implementação.
Mittal, A., Chaturvedi, D. D., Chaturvedi, S., & Singh, P. K. (2024). Impact of negative aspects of artificial intelligence on customer purchase intention: An empirical study of online retail customers towards AI-enabled E-retail platforms. In Demystifying the Dark Side of AI in Business (pp. 159-173). IGI Global.
Mogaji, E., Soetan, T. O., & Kieu, T. A. (2021). The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australasian Marketing Journal, 29(3), 235-242. https://doi.org/10.1016/j.ausmj.2020.05.003
Namatherdhala, B., Mazher, N., & Sriram, G. K. (2022). Artificial intelligence in product management: Systematic review. International Research Journal of Modernization in Engineering Technology and Science, 4(7), 2914-2917.
Newman, J. C. & Oak, R. (2020). Artificial Intelligence: Ethics in Practice. login Usenix Mag., 45 (1).
Oliveira JR, E. Q. D. (2020). O conceito de vulnerabilidade no direito penal. Disponível em: . Acesso em: 13 set 2023.
Oliveira, D. R. L. D. (2021). “O futuro presente”: influência da inteligência artificial na qualidade de vida do consumidor. Dissertação de mestrado - Universidade Federal da Paraíba (UFPB).
Panda, R., & Narayan Swar, B. (2013). Online Shopping: An Exploratory Study to Identify the Determinants of Shopper Buying Behaviour. International journal of business insights & transformation, 7(1).
Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of service research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Park, Y., & Lee, S. (2022). Gender differences in smartphone addiction and depression among Korean adolescents: Focusing on the internal mechanisms of attention deficit and selfcontrol. Computers in Human Behavior, 136, 107400. https://doi.org/10.1016/j.chb.2022.107400
Paulilo, M. A. S. (1999). A pesquisa qualitativa e a história de vida. Serviço social em revista, 2(2), 135-148. Piteira, M., Aparicio, M., & Costa, C. J. (2019). A ética na inteligência artificial: Desafios. A ética na inteligência artificial: Desafios.
Pitardi, V. and Marriott, H.R. (2021), “Alexa, she’s not human but. . . Unveiling the drivers of consumers’ trust in voice-based artificial intelligence”, Psychology & Marketing, 38(4), 626-642, https://doi.org/10.1002/mar.21457
Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131-151. https://doi.org/10.1177/0022242920953847
Rittenburg, T. L., & Lunde, M. B. (2016). Ethics in target market selection: A historical perspective. In Proceedings of 41º Annual Macromarketing Conference.
Roy, S., & Moorthi, Y. L. R. (2017). Technology readiness, perceived ubiquity and M-commerce adoption: The moderating role of privacy. Journal of Research in Interactive Marketing, 11(3), 268-295. https://doi.org/10.1108/jrim-01-2016-0005
Stuart, R., & Peter, N. (2010). Artificial Intelligence A Modern Approach Third Edition.
Sampieri, R.; Collado, C.; & Lucio, P. B. (1997). Metodología dela investigación. Colombia: Panamericana Formas e Impresos SA. Sánchez, C. A. C. (2021).
Efectos de la inteligencia artificial en las estrategias de marketing: Revisión de literatura. ADResearch: Revista Internacional de Investigación en Comunicación, (24), 26-41.https://doi.org/10.7263/adresic-024-02
Schlosser, A. E. (2003). Experiencing products in the virtual world: The role of goal and imagery in influencing attitudes versus purchase intentions. Journal of consumer research, 30(2), 184-198. https://doi.org/10.1086/376807
Sharma, A.P., Sharma, N.K., Sidana, N., Goel, R. (2024). Impact of Artificial Intelligence on Purchase Intention: A Bibliometric Analysis. In: Gaur, L., Abraham, A. (eds) Role of Explainable Artificial Intelligence in E-Commerce. Studies in Computational Intelligence, vol 1094. Springer, Cham. https://doi.org/10.1007/978-3-031-55615-9_5
Skalfist, P., Mikelsten, D., & Teigens, V. (2019). Inteligência Artificial: a quarta revolução industrial. Cambridge Stanford Books.
Silva, A. H., & Fossá, M. I. T. (2015). Análise de conteúdo: exemplo de aplicação da técnica para análise de dados qualitativos. Qualitas revista eletrônica, 16(1).
Silva, R. O. D., Barros, D., Gouveia, T., Almeida, M. D. O., & Merabet, D. D. O. B. (2021). Uma discussão necessária sobre a vulnerabilidade do consumidor: avanços, lacunas e novas perspectivas. Cadernos EBAPE. BR, 19, 83-95. https://doi.org/10.1590/1679-395120200026
Smith, N. C., & Cooper-Martin, E. (1997). Ehics and target marketing: the role of product harm and consumer vulnerability. Journal of Marketing, 61 (1), 1-20.
Spencer, J. C. (1993). The usefulness of qualitative methods in rehabilitation: Issues of meaning, of context, and of change. Archives of Physical Medicine and Rehabilitation, 74 (2), 119-126.
Thiry-Cherques, H. R. (2009). Saturação em pesquisa qualitativa: estimativa empírica de dimensionamento. Revista PMKT, 3(2), 20-27.
Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback:Deployment versus disclosure effects on employee performance. Strategic ManagementJournal, 42(9), 1600–1631. https://doi.org/10.1002/smj.3322
Tussyadiah, I. P., & Park, S. (2018). Consumer evaluation of hotel service robots. In B. Stangl, & J.Pesonen (Eds.), Information and communication technologies in tourism 2018 (pp. 308–320). Springer. https://doi.org/10.1007/978-3-319-72923-7_24
Turing, A. M.(1950). Máquinas de computação e inteligência. Mind, 59, 433-60.
Vieira, V. A. (2002). As tipologias, variações e características da pesquisa de marketing. Revista da FAE, 5(1).
Walsh, G., & Mitchell, V. W. (2005). Consumer vulnerability to perceived product similarity problems: Scale development and identification. Journal of Macromarketing, 25(2), 140-152.https://doi.org/10.1177/0276146705280613
Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326-349. https://doi.org/10.1016/j.lrp.2018.12.001
Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of business research, 69(5), 1562-1566.
Zhang, R., Chen, J. Q., & Lee, C. J. (2013). Mobile commerce and consumer privacy concerns. Journal of Computer Information Systems, 53(4), 31-38. https://doi.org/10.1080/08874417.2013.11645648

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 CC Attribution-NonCommercial-NoDerivatives 4.0